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THEORY OF AN INDUCTION MHD PROPELLER 

WITH A FREE FIELD 

V. I. Yakovlev UDC 538.4 

A considerable number of papers have been published [ 1-6] on magnetohydrodynamic propellers. However, the 
successes achieved in recent years in creating and using in technology superconducting magnetic systems [7] are an impetus 
for further investigations into MHD propellers. 

This paper is devoted to an investigation of the energy characteristics of a so-called induction MHD system with a 
free field [2]. This work is made necessary by the fact that in [2] the energy characteristics of the MHD propellers under 
consideration were obtained without taking into account the longitudinal boundary effect and are therefore grossly over- 
stated. Subsequently the results in [2], without critical analysis, were reproduced in other publications [3, 6] devoted to 
MHD propellers. 

The investigation carried out in this work showed that taking account of the finiteness of the dimensions of the 
source of the electromagnetic field leads not only to quantitative changes. At the same time the effectiveness of the 
installation for a given magnetic field intensity is substantially below the predictions [2], the required magnetic fields for 
obtaining a given efficiency are considerably higher. In the paper we propose a method.for increasing the effectiveness of 
the induction MHD propeller under consideration as a result of "amplitude modulation"; in this case the energy character- 
istics of the propeller (of finite dimensions) can be to a certain degree brought nearer to an "ideal" propeller [2]. 

1. We consider a rigid body of finite dimensions located in boundless conducting liquid with conductivity o, 
density p, being brought in motion by electromagnetic forces; the source of the fields is located within the body. In the 
role of the rigid body we consider the simplest model - a flat plate of finite width 2a along the x axis, infinitely extend- 
ing along the z axis, moving in its plane in the direction of the negative x half-axis. The assumption about infinity along 
the z axis is of no major importance. The results obtained will be true if the long plate being considered is rolled into a 
"ring" or cylinder with a height of 2a and a radius substantially exceeding the wavelength 27r/k 1 . 

The source of the electromagnetic field in the surrounding liquid is provided by introduction, in the plane of the 
plate, of surface currents having z-direction and being distributed over the width of the plate: 

i~ (xl, t) = Real J0" i0 (xl) e I01~-+~ ( I x, 1 ~ a) (1.1) 

(these currents act in the role of an inductor). In (1.1) Jo is the maximum current density, the function io(X 1) character- 

izes the distribution of the current amplitude over the plate width, Ii,(x~) I ~-~ t. By x 1 , Yl here and below we denote the 

coordinates with dimensions; for the corresponding dimensionless quantities we use the symbols x, y without indices. The 
problem consists of determining the distribution of the fields E, H of total force acting on the plate with the currents (1. l) 
from the side of the magnetic field of the currents j in the liquid, the required electric power, and also the velocity u o 
which is acquired by the plate. 

Below it is shown that within fairly wide limits of parameters the assumption about smallness of the parameter of 
magnetohydrodynamic interaction is valid: 

aH~2a 
N - -  ~-:N:-. <<t. (1.2) 

w"o 

The problem now becomes simpler. In particular, the electromagnetic fields in the liquid are determined from the equations 

r o t H = ( 4 ~ / c ) j ,  r o t e  t 0It d i v H ~ 0 ,  
c or '  (1.3) 

j = ~[E + (t/c) v • H], 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 105-116, May-June, 
1980. Original article submitted June 28, 1979. 
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where v is a known field of  velocities which is obtained in the case of flow around the given body without the electro- 
magnetic forces taken into account. In the case of  a flat plate this field of  velocities can be taken in the form v = u 0 e x 

which does not take into account the presence of  a boundary layer. The latter is valid if the space close to the plate 
occupied by the fields E, H is substantially larger than the volume occupied by the boundary layer, i.e., in the case 

~ = 2rdkl >> 6, (1.4) 

where ~ is the thickness of the boundary layer. 

2. The fields E, It, satisfying Eqs. (1.3), are sought in terms of  the vector potential 

. O - i % t  e A = Yo (2a/c) A (x, y) (2.1) 

where in terms of  the dimensionless variables x, y, introduced by means of  the length scale 2a, the dimensionless complex 
function A(x, y) satisfies the following equation and boundary conditions: 

_ OA(x, Y) I n ~  
h A  (x, y) + _ IikoA (x, y) - -  ~ 0"--'7---j , x ~  = 0; (2.2) 

OA I 2~ i~(x )e%~ ' i , ( x ) = { ~ ( x )  for [x[<~t /2 ,  (2.3) 
au v = 0 = - -  for I x [ > t / 2 ;  

A ]y=~ = O. (2.4) 

The dimensionless magnetic number of  Reynolds Re m and the slip s entering into (2.2) 

Rein ---- 4nav~ 2a/c ~, s --- uolv? f 

are defined in terms of  the phase velocity of  the running wave 

v} = eolkl  

(2.5) 

(2.6) 

and the velocity of  the liquid u o (vr ~ and u o are defined in the plate system). In the following we require also the 

magnetic Reynolds number determined with respect to the velocity of  liquid u o 

Re ~ = 4~(~uo2a/c 2 = t l e m s .  (2.7) 

The parameter 

k o =k12a  = n g ,  n =2a/(~/2) (2.8) 

characterizes the number of  half-waves X/2 of  the current (1.1) coveting the width of  the plate. The boundary conditions 
(2.3) and (2.4) have been written for the upper half-space y ~> 0. We confine ourselves to the consideration of the region 
y / >  0 because of  symmetry of A(x, y) about the plane y = 0. 

The solution of  the problem (2.2)-(2.4) is constructed by means of  the Fourier transform. Having represented 

% ~ 2/2 

i~(x) ~- j [ (k) eik=dk, I ( k )  = (t/2n) ! i~(x) e-ih=dx = (:l/2~) ! i o(x) e-~Xdx, 
--ore - - o o  - - ~  12 

the solution can be obtained in the form 

Z 
d/c, (2.9) 

where I(k) is the spectral density of  the step function i 1 (x) (2.3); I(k - ko) is the spectral density of  the function 

il (x) e% ~ ; under r" k ~ - -  zRem (ko - -  ks) we understand the value of  the root with a positive real part. 

It should be noted that no constraints are used on the value of  the magnetic Reynolds number in (2.9). 

From (2.1), (2.9) it is seen that the electromagnetic field in the liquid constitutes a superposition of fields running 
in the x direction with a fixed frequency co o and phase velocities varying from -r162 to oo, since the phase velocity 

~f = (t,,o/~) @ (2.1 o) 

where v~, k o are given in (2.6), (2.8), corresponds to the wave corresponding to the dimensionless wave number k. 

3. We calculate the integral quantities (the force of  pull acting on the plate and the required electrical power) 
referred to unit length of  the plate along the z axis. The force acting on the plate with the currents (1.l)  from the side 
of  the magnetic field has only an x-component which is computed in the form 
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Fx = -- (l/c) i iz (xl, t) H U (xl, O, t) dx 1 
- - a  

or after going over to complex quantities and averaging over time 

-'~ (2~) 2 S ik 2a]~ Real i 1 (x) e i%'~ aA* [ dx =: - -  2a ~ Real . [ I (k - -  ko) [z dk. 
< F ~ )  = 9 c ~  - ~  a---7 ly=o 2f i  _ ~  V k2 - -  i Re., (k o - -  ks) 

Calculating the real part of  the expression behind the integral sign, we can bring the result to the form 

<Fx> = --  a (Ho~/4~ 2) F 1 (ko, Rem, s), 
I- k0/s ] 

F ~ = 4 ~ [ : ~  k O ( k ) l I ( k - - k o ) l ~ d k  - ~ k O g ( k ) l l ( k - - k o ) l  ~'dk , 
ho/s 

(3.1) 

where under q)(k) we understand the positive-definite function for all k 

V + 
(:I) (k) -- V2  V k '  + Ream (k o --  ks)~ 

(3.2) 

The electric power Q required, representing the sum of  powers going on carrying out the mechanical work on the 
liquid and on its Joule heating, is computed as the flux of the Poynting vector S through the surface (in the plane problem 
being considered, through the contour) enveloping the plate, i.e., 

a 

Q =  2 t" S~jt~q=0dxl, S~=(c/4~t) E=Hx, <S,j>-- 8n c 2 Real i A ( x , O ) ~  y=o" 

Since So I.v,=0 = 0 for ]x~ I > a, the limits of  integration in Q can be replaced by [ - ~ ,  ~ ]; substituting the solution 

(2.9) into the expression <Sy>, we can bring the sought quantity to the form 

<Q> = (%/8~t 2) (2a) z H~Q 1 (k o, Re,~, s), 

I- ha  / ~ ~ " 1 

O l =  4n2[  ~ O ( k ) l l ( k - - k o ) l  ~ d k -  .I O(k )  l l ( k - - k o ) l  ~'dk]' 
_" hols 

(3.3) 

In (3.1), (3.3) by H 0 we understand the quantity 

Ho = 2~Jo/c, 

having the meaning of  maximum tension of  the magnetic field. The efficiency of  the model under consideration is deter- 
mined in the form 

( Fx) u o s F1 
n - <o> ;[ Q--;" 

From (3.1), (3.3) it is seen that the different portions of  the spectrum I(k - k 0) of  the function il(x)eik0x introduce 

different contributions into the quantity<F~>, <Q>. From this viewpoint the entire spectrum can be divided into three 
portions: 

I (k < 0) - the contribution into F 1 is negative, into Q1 it is positive; 

II (0 < k < k0/s) - the contribution into F 1 is positive, into Q1 it is positive; 

III (k > k 0/s) - the contribution into F 1 is negative, into Q1 it is negative. 

Hence it follows that the running magnetic fields only in the portion II work in the propeller regime. The portion III 
corresponds to the generator regime - here the liquid is braked by the field and performs work on the field, and the part 
of  this work after subtraction of  the Joule heating is transmitted into the electric system. The portion I corresponds to a 
heater - here the Joule heating exceeds the work performed by the liquid against the electromagnetic field. Consequently, 
not only the part of  kinetic energy of  the liquid being dissipated but also electric energy is transformed into heat. 

These peculiarities have a physical explanation consisting of  the fact that on the portion II of  the spectrum the 
phase velocity of  the constituent waves, in accordance with (2.10), (2.5), exceeds the velocity of  the liquid Uo, i.e., v~s = 
= uo < vf < oo , while on the portion III  0 < vf < u o. On the portion I the waves run in the direction opposite to the 
flow of liquid. 
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4. The determination of  the quanti ty Ho, necessary for ensuring the velocity Uo, is carried out from the equation 

of  mot ion of  the plate <F~> -b T~ = 0 , where T~ = cf4aOU~o/2 is the force of resistance of  friction. Hence, with (3.1) 
taken into account, it  follows 

Ho = 2rq/2pcl /F1%.  (4 . ! )  

We assume that  the coefficient of  resistance of the plate, being brought in motion by the electromagnetic method under 
consideration, is equal to the known coefficient of  resistance [8] of  a smooth plate 

c / =  0.455/(1g Re) 2,~8 - -  1700/Re, 

found without  the effect of electromagnetic fields taken into account, and being suitable in a broad range of Reynolds 
numbers up to Re ~ l09 . As a consequence of the fact that into (4.1) cj enters in the form of the multiplier]/c~, the 

error incurred by the assumption made is not  very large, and for the estimates of  H o this error may be neglected. 

Since cf depends on Re, with 

Re = Uo2a/v ~- Re~ '. v,~/v ~ e2,"4a~v 

(for seawater o = 5"101~ 1/sec, u = 10 .2 cm 2/see, "m/u = 1.43" 1011), the relation (4.1) can be represented in the form 

H o Re~ (Re)/F I (1%, Rein. s). %, V'9/,a. (4.2) 

From (1.2), (4.1) for the parameter  of  MHD-interaction we have 

N = Re~ 

When Re varies from 107 to 3"109 (with 7.10 -~ < Re ~ < 2. t .  t0 .2 ) the coefficient of  resistance e e varies within the 

limits (3-1)10 "3. Hence it is seen that  there exist fairly wide possibilities for validi ty of  the condition (1.2). Although 

it mentioned at once that for the example being considered below with large vanes  2a, u o (and consequently, Re ~ ), 

regimes advantageous from the viewpoint of  efficiency lead to values of F I for which N ~ 0.25�9 For  smaller Re~  fulfilment 

of the condit ion (1.2) is made easier. 

5. To obtain qualitative representations about the dependence of  F~, Q~ on k o in the case of  a fixed Re m we 

have to investigate the behavior of  functions behind the integral sign in (3.1), (3.3). In Fig. 1 we have schematically 

represented the functions gP(k) (3.2), k0P(k), ] I (k - -  k0)p, and also h ~  (k) I I(1~ - -  t%)] 2, ~ (#)11(k - -  #0)t 2 for a fixed 

k o. The maximum value with respect to the modulus is acquired for the function kq~(k) for /;~,2 = ( V 3 / 6 ) [ - -  Re,~s _+_ 

],/-R--e~s 2 + 41 /3  Rem#,] ; under the condit ion Re m s << 1, which is valid almost for all application with the use of  sea- 

water, lq,2 = __ ( l / ~ f l 3 f ] f l ~ , w i t h  the maximum value oflkc)(~:)l being 3/2."4. In the case of  1,:~ >> I~e~,~l;~ - -  ksl 

the functions ~(k) ,  k ~ k )  are simplified; here cb(#) := Re~ Ik0 - -  lcs l'2 !k i :~ , and for k = k o ~(k),  k ~ k )  assumes the 

valuesRem(l - - s ) /2k~ ,  Rem(t - - s ) /2ko ,  respectively. An important  part in the behavior of  the integrals F 1, Q1 is played by 

the funct ionlI (k  - -  k0)[~. Independently of  the actual form of  the step function i~(x)e% "~ in the power of  the spectrum 

there exists a principal maximum at the point  k = k o with width Ak ~ 2 r  given by the indeterminacy relation. In addition 

to the principal maximum there exist secondary maxima whose intensity falls as we move away from the principal maximum; 
at the same time the law of  decay of  the secondary maxima is extremely important ,  since it is in fact determining the be- 
havior of  the functions behind the integral sign in the region of  the origin of  coordinates. As is seen from Fig. 1, the basic 

contr ibution into the integrals F1, Q1 is made by two segments of the k axis: ]k - -  k0] ~ h k  and [k[ ~ l /Remko .  On 

the first segment (we call it  the right segment) the functions behind the integral sign have the maximaI~(0) Rem(l - - ~ p 2 k o  

and U(0) Re,n(t - - s ) /2k~ ,  monotonical ly  depending on ko; the maxima of  the functions behind the integral sign on the 

left segment, representing the secondary maxima reinforced by the multipliers kq~(k) and r of  the function II(k - -  ko)12, 

nonmonotonical ly  depend on k 0 (dependent  on ko, their posit ion along k in the region k = 0 is displaced, and the values 

of  the maxima under consideration vary as a result of  rapid variation of  the multipliers k~(k)  and q~(k)). In Fig. 1 the 

functions kq~(k) [ I (k - -  ko) I ~, eb(k) lI(k - -  k0) 12 are presented for a value of  k o for which the posit ion of  one of  the 

secondary maxima coincides with the position of  a maximum of  the function kq~(k). 

Consequently, the dependence of  Fl(ko), Ql(ko) in the case of  fixed Rein, s has a nonmonotonic  character up to 

certain critical values of  k o. The character of  oscillations and the magnitude of the critical values of  k o are determined by 

the function II(k - -  k0) 12 or more precisely, by the law of  decay of  its secondary- maxima. 

The results for the case of a constant  current ampfitude across the width of the plate, i.e., for io(x) ~ t ,  I(~) = 
"t/2 "sin k/2 t a,) ~ , are presented in Figs. 24 .  Here for k o varying within the limits from rr to 15rr, we have presented the 
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relations F l ( k  o) (Figs. 2, 3) and r/(k o) (Fig. 4) for different values of  s for Re~  = 0.02. (To the value Re~  = 0.02 there 

corresponds a body with length 2a = 200 mm = 2"104 cm moving at the velocity u 0 = 1.43 >'. t03 cm/sec ~, 50 km/h 

in seawater with conductivity o = 5"101~ 1/sec; these parameters coincide with or are close to those considered in [2]). 

In Fig. 4 the relation r/(ko) is presented fully only for s = 0.2, 0.4; for s = 0.6 the port ions of  curves going beyond the 

limits of  the first two have been plotted.  For  s = 0.8 all local maxima of r/(k o) have values that  are less than those depict- 

ed on  the graphs; therefore these relations have not  been presented in Fig. 4. 

In connection with the relations just  presented we should pa3/at tent ion to two features: first, efficiencies not  
attaining the magnitude 0.1 for any values of  k0, s are very far removed from the predictions of the theory [2] which 

does not  take into account finiteness of  the dimensions of the source of  the electromagnetic field; second, F 1 and r/ not  

only oscillate about the mean positions when k o increases, but  in the case of  large s also go into the region of  negative 

values. Although l'~ > u0, on the plate instead of  the force of  pull there can act a braking force from the side of the 
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The occurrence of  this unusual resuit is due to the port ion III of the I(k - ko) magnetic field (on certain intervals of  k o). 
spectrum. 

From Figs. 2-4 it is seen that  the oscillating character of  the relations F 1 (k0), ~(k 0) has a tendency to persist also 

beyond the limits k o = 157r. At  the first glance it appears that this circumstance contradicts "common sense." Indeed, 

intuitively we imagine that  if  on the plate width 2a there are located "many"  wavelengths, i.e., k o >> r ,  and if i 0 (x) - 1 

(the amplitude of  current is constant across the width of the plate), then the plate of finite width being considered in a 
certain sense only slightly differs from an infinite plate. In fact it is assumed that the quantities (F~) ,  (Q),  11 coincide 

with the analogous quantities computed for a port ion with width 2a, imagined to be cut out  of an infinite plate with the 

current iz(x~, t) = J j ( k r ~ l - % t ) ( l x l l  ~ c~) .  The dimensionless quantities referring to the port ion under consideration are 

denoted by F~ ,  Q,,o, r / ~ ,  where it can be shown that  

F~=2~lRer r0 ( l - - s ) /2k0 ,  Q ~ :  2 ~ R e m ( l - - s ) / 2 k ~ ,  ~l~=S-  (5.1) 

The parameters Rein, s, k o entering here have the previous meaning (2.5)-(2.7). In Fig. 2 for the value s = 0.2 the relation 

F~,(k o) is shown by the dashed line. We see that even in the region k o = 15~r the corresponding quanti ty F I still noticeably 

differs from F ~ .  As for ~7, then within the limits .~ ~ k0 ~ 15n it is altogether yew far from the quantity ~ = s. 

Thus, if  on the plate there is packed an order of  15 half-waves, such a plate is still far from an "inffmite" plate. 

It is interesting to find out for which values ko the relations F~ (ko), Ql(k0) from (3.1), (3,3) go to their asymptotic values (5.1) 

For  an answer we turn to the functions F1, Q~ behind the integral sign, shown in Fig. 1. We note that exit to the asymp- 

totic values occurs when the contr ibut ion of  the left peaks of the functions k ~ ( k ) I I ( k  - -  ko)I z and rI)(k)lI(k - -  ko)1 ~ 

behind the integral sign to the integrals becomes small in comparison with the contribution of  the right peaks. Let us 
consider to what condit ion this circumstance leads with respect to F1. 

The contr ibut ion of  the neighborhood of  the point  k = 0 to the integral F:  can be small in two cases: first, if the 

value of  the: maximum of the function behind the integral sign in this region is substantially less than the corresponding 

maximum at the poin t  k = k0, i.e., if  l /k~ << Re~ • (t - - s ) / 2 k o  , or 

[(t - - s )  Re~k0] -1 << t ,  (5.2) 

there is concentrated a considerable number of  secondary maxima of the function 

2z/(ae~ko) << ~ (5.3) 

second, i f  on the segment [kl N ]/Re~k0 

[[(k - -  k0)r" , i.e., 3/Re, ,k,  >> 2.~ , or 

(for this the contr ibut ion of  the neighborhood k = 0 to the integral F 1 vanishes because of the function k~(k)  being odd 
in this neighborhood). Since the values interest of the parameter  s do not  go beyond the limits 0.3 ~< s ~< 0.8, the condi- 

tions (5.2), (5.3) practically coincide. As for the integral QI ,  here fulfilment of  the condit ion (5.3) is not  sufficient for 
Q1 to go over to asymptotic  behavior. In the case of  (5.3) the contribution of  the neighborhood k = 0 to the integrai Q~ 
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does not vanish; it only ceases oscillating, dependent on k o . The necessary condition is derived analogously to (5.2) and 

it assumes the form 4/(lT2R--R--g~-fmk0k~)<<Re m (t - - s ) / 2 k ~  or 

4 [ - [ /RemkoRera( i  - -  s ) 1-1 <~ I .  (5.4) 

This is a stronger condition than (5.2) or (5.3), since, as was already mentioned, for almost all applications Re~ << 1. 

For example, for the case considered above with Re~ = 0.02 for s = 0.5, the condition (5.4) reduces to the requirement 

k 0 >> 2"106. Consequently, the efficiency values r / ~  s of  practical interest are attained for very large k o for which the 

quantity F1, coinciding with F~, from (5.1), is small. This leads to prohibitively large values of  the required field H0, 
given by (4.1) or (4.2), as a consequence of  which they are not presented here. Thus, from the analysis just carried out 

it is seen that for Re m << 1 the small parameter determining the asymptotic behavior of  the quantities F 1 , Ql, ~ for 

large k o is furnished by the parameter 

e = (1/Remk0Rer,) -1, (5.5) 
with 

2 

(the parameter 1 - s here is considered to be finite). 

I t  is necessary to make the following remark. Factually, when approaching the condition (5.4), the given analysis 
ceases to be valid, since in this case the electromagnetic fields will be concentrated within the boundary layer and the 
assumption (1.4) is violated. But one thing is clear - a very large number of  waves is necessary, to be able to go to the 
"infinite plate" regime giving the efficiency 77 = s. Consequently, in this case it is not possible to use the results obtained 
from the analysis of  an infinitely long periodic source, for a body of  finite dimensions, as is done in [2]. 

6. The question about the possibility of  controlling the energy quantities F1, ~ by means of  "amplitude modula- 

tion" is of  interest. The term "amplitude modulation" here is used to denote the fact that the distribution of  amplitude 
of  current (I .1)  across the width of  the plate is different from a uniform distribution, i.e., io(X) ~ 1. 

Above it is noted that the behavior of  the functions F 1 (ko) , Ql(ko) in the case of fixed Rein, s depends on the 

function. It is understood that if we takelI(k - -  k0) F'-such that the decay of  the secondary maxima of  the function io(X) 

is more rapid than for I I (k  - -  ko)12 , then the contribution of  the neighborhood of  the point k = 0 to the integrals is reduced. 

Since this contribution is especially large for the quantity Q1 (because of  the large value of  the multiplier @(k) in the 

integral Q) the circumstance just mentioned should lead to an increase in rl. 

We consider the example 

io(z) = cos  z z  (Ixl ~ t12),  I ( k )  = cos ( k l 2 ) / ( a  "~ - -  k2), (6.1) 

for which the law of  decay of the secondary maximal/(k)12 for large k is 1/k 4. At the same time, if l / k~  << Rem(t - - s ) / k o ,  

the neighborhood of  the point k = 0 ceases to influence F~ and the relation F~ (k o) assumes the asymptotic value 
(t/4~)Rem(l - - s ) / 2 k o  , differing by the multiplier 1/2 from the expression F ~  (5.-1), i.e., 
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& = file,, ,  (1 - -  s ) /Sako )  [1 + O (ca Re,~)], 

where e is determined according to (5.5). For  ( ] f ~ k 0 ~ ) - l < <  lqe,~(i--s)/2k~ Q1 ceases to depend on the neighborhood 

k = 0 and the quanti ty goes over to the asymptotic value of  s, i.e., 

~1 = s  [1 - -  O(~hl~tlem)]. 

The results of  computat ions for the example (6. l)  under consideration are presented in Fig. 5 (for the value 
considered above Re~ = 0.02). Here solid lines depict  F1, and dashed lines depict  rb We see that the oscillatory character 

of  the relation F l (k  o) already for k o > 31r manifests itself slightly. As for ~?, then this quantity,  although it preserves an 

oscillatory character within the limits k o ~ 15rr, has a clear tendency towards growth when k o increases. For  s = 0.2 7? 

approaches the asymptot ic  value 0.2 already for k o = 15rr; for larger s the asymptotic values of s are attained, as is seen from 

Fig. 5, for k 0 > 157r. (For  the value s = 0.8 the function r~(ko) is not  plot ted on the graph, since the maxima of r~ fo r  

the given s and k o < 15rr lie below the maxima of  r~ corresponding to s = 0.6). It is necessary to emphasize that use of  

"ampli tude modula t ion ,"  as comparison of  the results of Figs. 2 and 5 shows, allows us considerably to increase the value 

for the given values of  the parameter  k o. Precisely the fact that relatively large values of ~ are attained for smai1 ko, for 

which the dimensionless force F 1 still is not  very small and, consequently, the required quantities H o can be considered as 
practicable. 

In Fig. 6 we have presented the dependence of  efficiency on the magnitude of  H o for fixed values of k o ensuring 

local maxima of  ~(ko). Here along the abscissa axis we have plot ted the values H o calculated according to the  expression 

(4.2) for the dimension Re~ = 0.02. 2a = 200 m. 

We see that  if  on the plate there are packed three half-waves of current, i.e., k o = 3rr, then independently of H o 

the efficiency cannot be higher than 19%; for k o = 5rrr? it  does not  exceed 25%; to each permissible value of  H o there 

corresponds its value of  k o ensuring the maximum efficiency; an increase in the permissible H o necessitates going over to a 

larger number  of  half-waves and ensures higher values of  7. In Fig. 6 the maximum value of  k o is taken as 11:~; the values 

13rr, 15rr and above reveal that r / i s  higher for values of  H o going beyond the limits used in Fig. 6; therefore the correspond- 

ing curves are not  plot ted here (to the maximum value taken here H o = 1.75"104 G there corresponds the value of parameter 

N = 0.24). For  the example we can note that for k o = t57r, as is seen from Fig. 5, the value r~--- 45% is attained; here 

H 0 --~ 22"103 G. 

Here the advantages of  use of  "ampli tude modula t ion"  are shown on the example (6.1). It is obvious that if we 
take an "impulse" ye t  with a narrower spectrum (e.g., the Gaussian curve e -~x 2 possesses a minimum spectral width [9]), 
then these advantages must  show up still more clearly. 
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SELF-SIMILAR MOTION OF AN IONIZED GAS 

EXPELLED BY A MAGNETIC PISTON 

V. V. Beloshitskii, V. S. Komel'kov, 
and G. Yu. Petrushchenko UDC 533.95 

The motion of a gas in plasma accelerators and high-current discharges, under the conditions of  the skin effect, can 
be represented as its ejection by a magnetic piston under the action of  a given current flow along the surface. Such a 
model was first proposed in [ 1 ] to explain the pinch effect. In the initial stage, the law of  the rise in the current is 
approximated rather well by a linear function of  the time, and the magnetic field, by a quadratic law: p = Ct n , where 
n = 2; C = const. Under the usual conditions of  an experiment, the magnetic pressure is much greater than the initial 
pressure of  the gas, and the latter can be neglected. In this case, the motion of  the gas 'is self-similar. An analogous 
problem for a given law of  change in the velocity of  the piston was discussed earlier [2, 3]. 

We shall assume the gas to be ideal and monoatomic, and the process to be adiabatic. The determining parameters 
in the problem will be the coordinate r, the time t, the density of  the unperturbed gas p l ,  and the constant C, determining 

the law of  change in the pressure at the piston (the initial velocity v i = 0 and the initial pressure Pi = 0). From these 
parameters, a single dimensionless variable can be obtained 

r ~ -  P i  r ' IIZ ~ "75" 

For the velocity, the density, and the pressure, we introduce the dimensionless functions V, R, P in the following 
manner: 

o 

r yP v=Tv(x), 0=01R(~), p=~P(~), z=-g, 
then, the system of hydrodynamic equations is brought into the form [4] 

dz [ 2 ( V - - J ) 4 - v ( ? - - t )  V I ( V - - m - - i )  - - ( Y - - I )  V ( V - -  I ) ( V - - m - - I ) - - [ 2 ( V - - I ) - - 2 m ~ l  z . (1) 

dV - -  Z (V - -  m - -  t)"[V (V --  l) (V --  m -- t )--  (2m]~? -~ vV)  z] 

dln~ (V- -m- - t )Z- -z  
dV = V ( V ~ J ) ( V - - m - - I ) - - ( 2 m / 3 ? ~ - v V ) z ;  (2) 

d l n R  ( V - - m - - J )  ~ V(V-- t ) (V- -m-- i ) - - (2m/y4-vV)z  
d In ~. z --  (V --  m -- t) ~ -~- vV, (3) 

where 7 is the ratio of  the specific heat capacities; v = 1, 2, 3, respectively, for plane, cylindrical, and spherical symmetry. 

Let us examine the additional conditions which arise due to the presence of the surface of a strong discontinuity 
ahead of  the piston. We note that, in the shock wave, r is a function of  t. Consequently, the determining parameters in 
the shock wave will be t, P l ,  and C, from which it is impossible to form a dimensionless quantity. Therefore, at the shock 
wave 
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